在2018年,人們目睹了基于機器學(xué)習(xí)和人工智能的平臺、工具和應(yīng)用程序的急劇增長。這些技術(shù)不僅影響了軟件和互聯(lián)網(wǎng)行業(yè)的發(fā)展,還影響了醫(yī)療保健、法律、制造業(yè)、汽車和農(nóng)業(yè)等其他垂直行業(yè)。
人們將繼續(xù)看到2019年及以后的機器學(xué)習(xí)和人工智能相關(guān)技術(shù)的進步。亞馬遜、蘋果、Facebook、谷歌、IBM和微軟等公司正在投資研發(fā)人工智能,這將有助于生態(tài)系統(tǒng)將人工智能接近最終消費者。
以下是2019年人們需要關(guān)注的5種人工智能趨勢:
(1)人工智能芯片的興起
與其他軟件不同,人工智能十分依賴專用處理器來對CPU提供計算能力的補充。即使是最快和最先進的CPU也可能無法提高人工智能模型的訓(xùn)練速度。在推理時,該模型需要額外的硬件來執(zhí)行復(fù)雜的數(shù)學(xué)計算,以加速對象檢測和面部識別等任務(wù)。
2019年,英特爾、NVIDIA、AMD、ARM和高通等芯片制造商將推出專用芯片,加速執(zhí)行支持人工智能的應(yīng)用程序。這些芯片將針對與計算機視覺、自然語言處理和語音識別相關(guān)的特定用例和場景進行優(yōu)化。來自醫(yī)療保健和汽車行業(yè)的下一代應(yīng)用將依賴這些芯片為最終用戶提供智能服務(wù)。
2019年也將是亞馬遜、微軟、谷歌和Facebook等超大規(guī)模基礎(chǔ)設(shè)施廠商將增加對基于現(xiàn)場可編程門陣列(FPGA)和專用集成電路(ASIC)的定制芯片投資的一年。這些芯片將針對基于人工智能和高性能計算(HPC)運行現(xiàn)代工作負(fù)載進行大量優(yōu)化。其中一些芯片還將協(xié)助下一代數(shù)據(jù)庫加速查詢處理和預(yù)測分析。
早期項目是:亞馬遜的Nitro、谷歌Cloud TPU,微軟Project Brainwave、英特爾Myriad X VPU
(2)邊緣的物聯(lián)網(wǎng)和人工智能的融合
在2019年,人工智能在邊緣計算層將與物聯(lián)網(wǎng)結(jié)合。在公共云中訓(xùn)練的大多數(shù)模型將部署在邊緣。
工業(yè)物聯(lián)網(wǎng)是人工智能的頂級用例,可以執(zhí)行異常檢測、根本原因分析和設(shè)備的預(yù)測性維護。
基于深度神經(jīng)網(wǎng)絡(luò)的高級機器學(xué)習(xí)模型將進行優(yōu)化以在邊緣運行。他們將能夠處理視頻幀、語音合成、時間序列數(shù)據(jù)和由攝像機、麥克風(fēng)和其他傳感器等設(shè)備生成的非結(jié)構(gòu)化數(shù)據(jù)。
物聯(lián)網(wǎng)將成為企業(yè)人工智能的最大驅(qū)動力。邊緣設(shè)備將配備基于FPGA和ASIC的專用人工智能芯片。
早期項目是:支持機器學(xué)習(xí)推理的AWS Greengrass、Azure IoT Edge人工智能工具包、Google Cloud IoT Edge、FogHorn Lightning Edge Intelligence和TIBCO公司的Project Flogo。
(3)神經(jīng)網(wǎng)絡(luò)之間的互操作性成為關(guān)鍵
開發(fā)神經(jīng)網(wǎng)絡(luò)模型的關(guān)鍵挑戰(zhàn)之一在于選擇正確的框架。數(shù)據(jù)科學(xué)家和開發(fā)人員必須從多種選擇中選擇合適的工具,包括Caffe2、PyTorch、Apache MXNet、Microsoft Cognitive Toolkit和TensorFlow。一旦模型在特定框架中進行了訓(xùn)練和評估,就很難將訓(xùn)練好的模型移植到另一個框架中。
神經(jīng)網(wǎng)絡(luò)工具箱之間缺乏互操作性阻礙了人工智能的采用。為了解決這一挑戰(zhàn),AWS、Facebook和Microsoft合作建立了開放式神經(jīng)網(wǎng)絡(luò)交換(ONNX),這使得在多個框架中重用經(jīng)過訓(xùn)練的神經(jīng)網(wǎng)絡(luò)模型成為可能。
在2019年,開放式神經(jīng)網(wǎng)絡(luò)交換(ONNX)將成為該行業(yè)的重要技術(shù)。從研究人員到邊緣設(shè)備制造商,生態(tài)系統(tǒng)的所有關(guān)鍵參與者都將依賴ONNX作為推理的標(biāo)準(zhǔn)運行時間。
早期項目是:Windows 10附帶運行ONNX、英特爾公司支持ONNX的OpenVINO工具包。
(4)自動化機器學(xué)習(xí)將更加突出
從根本上改變基于機器學(xué)習(xí)的解決方案的一個趨勢是AutoML。它將使業(yè)務(wù)分析師和開發(fā)人員能夠開發(fā)可以解決復(fù)雜場景的機器學(xué)習(xí)模型,而無需經(jīng)過機器學(xué)習(xí)模型的典型訓(xùn)練過程。
在處理AutoML平臺時,業(yè)務(wù)分析師會專注于業(yè)務(wù)問題,而不是迷失在工作流程中。
AutoML完全適用于認(rèn)知API和自定義機器學(xué)習(xí)平臺之間。它提供了正確的自定義級別,而無需強迫開發(fā)人員完成精心設(shè)計的工作流程。與通常被視為黑盒子的認(rèn)知API不同,AutoML具有相同程度的靈活性,但自定義數(shù)據(jù)與可移植性相結(jié)合。
早期項目是:DataRobot、Google Cloud AutoML、Microsoft自定義認(rèn)知API、亞馬遜Comprehend的自定義實體。
(5)人工智能將通過AIOps使DevOps實現(xiàn)自動化
現(xiàn)代應(yīng)用程序和基礎(chǔ)設(shè)施正在生成日志數(shù)據(jù),這些數(shù)據(jù)被捕獲以用于索引、搜索和分析。從硬件、操作系統(tǒng)、服務(wù)器軟件和應(yīng)用軟件中獲得的大量數(shù)據(jù)集可以被聚合和關(guān)聯(lián),以發(fā)現(xiàn)洞察力和模式。當(dāng)機器學(xué)習(xí)模型應(yīng)用于這些數(shù)據(jù)集時,IT操作從被動轉(zhuǎn)變?yōu)轭A(yù)測。
當(dāng)人工智能的強大功能應(yīng)用于運營時,它將重新定義基礎(chǔ)設(shè)施的管理方式。機器學(xué)習(xí)和人工智能在IT運營和DevOps中的應(yīng)用將為組織提供智能。它將幫助運營團隊進行精確和準(zhǔn)確的根本原因分析。
AIOps(智能運營)將在2019年成為主流。公共云供應(yīng)商和企業(yè)將從人工智能和DevOps的融合中受益。
早期項目是: Moogsoft AIOps、Amazon EC2 Predictive Scaling、Azure VM resiliency、Amazon S3 Intelligent Tiering機器學(xué)習(xí)和人工智能將成為2019年的關(guān)鍵技術(shù)趨勢。從業(yè)務(wù)應(yīng)用到IT支持,人工智能將對行業(yè)產(chǎn)生重大影響。
(免責(zé)聲明:本網(wǎng)站內(nèi)容主要來自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準(zhǔn)確性及可靠性,但不保證有關(guān)資料的準(zhǔn)確性及可靠性,讀者在使用前請進一步核實,并對任何自主決定的行為負(fù)責(zé)。本網(wǎng)站對有關(guān)資料所引致的錯誤、不確或遺漏,概不負(fù)任何法律責(zé)任。
任何單位或個人認(rèn)為本網(wǎng)站中的網(wǎng)頁或鏈接內(nèi)容可能涉嫌侵犯其知識產(chǎn)權(quán)或存在不實內(nèi)容時,應(yīng)及時向本網(wǎng)站提出書面權(quán)利通知或不實情況說明,并提供身份證明、權(quán)屬證明及詳細侵權(quán)或不實情況證明。本網(wǎng)站在收到上述法律文件后,將會依法盡快聯(lián)系相關(guān)文章源頭核實,溝通刪除相關(guān)內(nèi)容或斷開相關(guān)鏈接。 )