在進(jìn)行任何AI/ML部署之前,組織需要將其數(shù)據(jù)科學(xué)的研究工作與項(xiàng)目管理的最佳實(shí)踐相結(jié)合。
在2019年1月,Gartner發(fā)布了一項(xiàng)調(diào)查,37%的受訪者表示他們已經(jīng)在某種程度上使用了人工智能(AI),但54%的受訪者表示,他們所在組織的技能短缺阻礙了他們積極推進(jìn)使用人工智能的進(jìn)程。
這里指的并不是數(shù)據(jù)科學(xué)家,他們?nèi)匀还┎粦?yīng)求,并且正在積極地被雇傭,而是指許多組織沒有使用IT項(xiàng)目的方法來實(shí)施他們的AI工作,以確保項(xiàng)目滿足他們的業(yè)務(wù)目標(biāo)。
“我們看到很多數(shù)據(jù)科學(xué)團(tuán)隊(duì)正在研究許多并行的ML和AI計(jì)劃,但是很少有人將模型部署到實(shí)際的生產(chǎn)應(yīng)用程序當(dāng)中,”專攻機(jī)器學(xué)習(xí)(ML)訓(xùn)練數(shù)據(jù)的Alegion首席執(zhí)行官Nathaniel Gates表示。
Gates補(bǔ)充說,高技能的數(shù)據(jù)科學(xué)家可能缺乏數(shù)據(jù)準(zhǔn)備和項(xiàng)目管理方面的實(shí)際業(yè)務(wù)經(jīng)驗(yàn)?!八麄兩瞄L概念化、構(gòu)建和測試AI和ML算法,”他繼續(xù)說道?!暗俏覀兺ǔ2粫谶@些數(shù)據(jù)科學(xué)團(tuán)隊(duì)當(dāng)中發(fā)現(xiàn)太多的人工智能項(xiàng)目專家。所以他們往往缺乏為人工智能和機(jī)器學(xué)習(xí)準(zhǔn)備數(shù)據(jù)的實(shí)際經(jīng)驗(yàn)?!?/p>
在進(jìn)行任何的AI/ML部署之前,組織需要將其數(shù)據(jù)科學(xué)的研究工作與其項(xiàng)目管理的最佳實(shí)踐相結(jié)合。
如何改進(jìn)部署
以下是組織改進(jìn)人工智能部署的五種方法。
1.開發(fā)一個內(nèi)部切換流程,將初始數(shù)據(jù)科學(xué)算法和早期數(shù)據(jù)工作轉(zhuǎn)換到IT項(xiàng)目管理當(dāng)中
這種切換將確保數(shù)據(jù)質(zhì)量和數(shù)量準(zhǔn)備,并將項(xiàng)目置于熟練的項(xiàng)目經(jīng)理的管理之下。
2.將人工數(shù)據(jù)評估和機(jī)器學(xué)習(xí)自動化與您的數(shù)據(jù)結(jié)合使用
了解數(shù)據(jù)的技術(shù)人員在數(shù)據(jù)質(zhì)量評估中是非常寶貴的,但是他們可能缺乏審查所有數(shù)據(jù)算法流程的能力。因此,采用機(jī)器學(xué)習(xí)形式的數(shù)據(jù)評估自動化是至關(guān)重要的,機(jī)器學(xué)習(xí)可以由人類專家進(jìn)行訓(xùn)練,以評估數(shù)據(jù)的質(zhì)量。
3.為您的ML使用敏捷開發(fā)方法
人工智能項(xiàng)目應(yīng)該在可管理的sprint中進(jìn)行,允許快速迭代地規(guī)劃、構(gòu)建和測試人工智能應(yīng)用程序的各個部分。
“對于成功的ML開發(fā)來說,關(guān)注持續(xù)迭代改進(jìn)的敏捷開發(fā)方法是必不可少的,”Gates說。
4.集中您的AI和ML數(shù)據(jù)
“我們合作過的最成熟的公司已經(jīng)將他們對人工智能的ML訓(xùn)練數(shù)據(jù)需求合并到了一個集中的共享服務(wù)當(dāng)中,該服務(wù)可以在企業(yè)內(nèi)的眾多數(shù)據(jù)科學(xué)項(xiàng)目中被使用,”Gates說。
5.使用熟練的項(xiàng)目經(jīng)理
AI和ML團(tuán)隊(duì)?wèi)?yīng)該由能夠執(zhí)行項(xiàng)目管理方法和最佳實(shí)踐的項(xiàng)目經(jīng)理來擴(kuò)充。
“AI和ML團(tuán)隊(duì)常常沒有懂得如何在團(tuán)隊(duì)之外的組織中進(jìn)行運(yùn)作的成員,”Gates表示?!拔覀円恢痹谂c數(shù)據(jù)科學(xué)家交談,他們知道自己需要大量的ML訓(xùn)練數(shù)據(jù),完全理解為什么他們無法用現(xiàn)有的團(tuán)隊(duì)來生成這些數(shù)據(jù),但是卻對組織的預(yù)算、采購和項(xiàng)目管理流程一無所知?!?/p>
(免責(zé)聲明:本網(wǎng)站內(nèi)容主要來自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準(zhǔn)確性及可靠性,但不保證有關(guān)資料的準(zhǔn)確性及可靠性,讀者在使用前請進(jìn)一步核實(shí),并對任何自主決定的行為負(fù)責(zé)。本網(wǎng)站對有關(guān)資料所引致的錯誤、不確或遺漏,概不負(fù)任何法律責(zé)任。
任何單位或個人認(rèn)為本網(wǎng)站中的網(wǎng)頁或鏈接內(nèi)容可能涉嫌侵犯其知識產(chǎn)權(quán)或存在不實(shí)內(nèi)容時,應(yīng)及時向本網(wǎng)站提出書面權(quán)利通知或不實(shí)情況說明,并提供身份證明、權(quán)屬證明及詳細(xì)侵權(quán)或不實(shí)情況證明。本網(wǎng)站在收到上述法律文件后,將會依法盡快聯(lián)系相關(guān)文章源頭核實(shí),溝通刪除相關(guān)內(nèi)容或斷開相關(guān)鏈接。 )