在圖像任務(wù)中卷積網(wǎng)絡(luò)通常將輸入圖像編碼成一系列中間特征來(lái)捕捉圖像局部和全局的語(yǔ)意信息,特征的空間分辨率也會(huì)隨著層數(shù)的增加而減小。然而,這種以犧牲空間分辨率為代價(jià)的模型結(jié)構(gòu)對(duì)于需要多尺度特征的識(shí)別任務(wù)來(lái)說(shuō)并不能獲取非常有效的特征,尤其像是目標(biāo)檢測(cè)和語(yǔ)意分割任務(wù)中,類(lèi)別識(shí)別和目標(biāo)定位同樣重要。像FCN和DeepLab等工作都提出了多尺度的編解碼器架構(gòu)來(lái)解決這一問(wèn)題,利用犧牲尺度的模型來(lái)作為編碼器,同時(shí)利用解碼器來(lái)恢復(fù)空間信息。
雖然這種架構(gòu)成功地提升了識(shí)別和定位任務(wù)的性能,但使用了降采樣的編碼器依舊損失了空間信息,需要解碼器進(jìn)行恢復(fù),但這種恢復(fù)無(wú)法保留足夠的原始空間信息。人們不禁想到,如果可以設(shè)計(jì)出一種主干模型避免空間信息的損失,是不是就能天然地同時(shí)適應(yīng)于圖像識(shí)別與定位任務(wù)了?
幾種不同的尺度輪換架構(gòu)
在這種思想的指導(dǎo)下,研究人員在今年的CVPR論文SpineNet中提出了一種名為尺度輪換模型(scale-permuted)的元結(jié)構(gòu),從兩個(gè)方面提升了主干結(jié)構(gòu)的性能。中間特征圖的空間分辨率應(yīng)該可以在任意層提升或者減小,以便在網(wǎng)絡(luò)加深時(shí)保持空間信息的有效性;其次特征圖間的連接應(yīng)該跨越特征尺度來(lái)促進(jìn)多尺度信息的融合。在新架構(gòu)下,研究人員利用了神經(jīng)架構(gòu)搜索(Neural Architecture Search,NAS)方法在新的搜索空間中尋找有效的尺度輪換模型。結(jié)果表明這種模型在多尺度視覺(jué)任務(wù)中超過(guò)了標(biāo)準(zhǔn)的尺度縮減主干網(wǎng)絡(luò),在多個(gè)基準(zhǔn)上實(shí)現(xiàn)了優(yōu)異性能指標(biāo)。
左圖顯示了尺度縮減結(jié)構(gòu),右圖顯示了尺度置換主干網(wǎng)絡(luò)。每個(gè)矩形表示了一個(gè)模塊,顏色和尺寸顯示了空間分辨率和特征維度的變化,箭頭表示了不同層間的連接。
一、SpineNet的架構(gòu)設(shè)計(jì)
為了高效地設(shè)計(jì)SpingNet的架構(gòu),避免耗時(shí)的手工設(shè)計(jì)、參數(shù)搜索和設(shè)計(jì),研究人員設(shè)計(jì)了NAS來(lái)優(yōu)化模型結(jié)構(gòu)。主干模型在COCO數(shù)據(jù)集上進(jìn)行了訓(xùn)練,同時(shí)強(qiáng)化了識(shí)別和定位任務(wù)的需求。在架構(gòu)搜索階段,研究人員主要在三個(gè)方面進(jìn)行了處理:
尺度輪換:由于需要從已有的模塊進(jìn)行構(gòu)建,網(wǎng)絡(luò)模塊的順序十分重要。在搜索中通過(guò)重整中間特征和輸出模塊的序列關(guān)系來(lái)重新定義了尺度輪換空間。交叉尺度連接:為每個(gè)模塊定義了兩個(gè)輸出連接,可以來(lái)自于任意的低層模塊或主干網(wǎng)絡(luò)模塊。模塊自適應(yīng)(可選):模塊可以自適應(yīng)地調(diào)節(jié)其尺度和種類(lèi)。
從尺度縮減到尺度輪換的架構(gòu)搜索過(guò)程對(duì)比
NAS搜索中使用了ResNet-50 主干網(wǎng)絡(luò)來(lái)作為搜索種子,首先學(xué)習(xí)了尺度輪換和交叉連接的方式。研究人員使用了基于遞歸神經(jīng)網(wǎng)絡(luò)的控制器來(lái)實(shí)現(xiàn)架構(gòu)搜索,這是目前最適合于尺度輪換的搜索架構(gòu)。為了加速搜索過(guò)程,研究人員還設(shè)計(jì)了SpineNet代理,將SpineNet- 49的特征維度縮減因子設(shè)置為0.25,設(shè)置重采樣因子α為0.25,并在bbox檢測(cè)和分類(lèi)中使用了64維的特征。為了防止搜索空間的指數(shù)增加,研究人員限制了中間架構(gòu)僅僅允許最后五個(gè)block搜索,并在在現(xiàn)有block中進(jìn)行檢索。針對(duì)每個(gè)樣本,代理訓(xùn)練512分辨率的圖像5個(gè)epoch,同時(shí)驗(yàn)證集上的AP被作為獎(jiǎng)勵(lì)來(lái)優(yōu)化結(jié)構(gòu)。實(shí)際中使用了100個(gè)TPU來(lái)運(yùn)行,來(lái)搜索最好的結(jié)構(gòu)。
123下一頁(yè)>(免責(zé)聲明:本網(wǎng)站內(nèi)容主要來(lái)自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準(zhǔn)確性及可靠性,但不保證有關(guān)資料的準(zhǔn)確性及可靠性,讀者在使用前請(qǐng)進(jìn)一步核實(shí),并對(duì)任何自主決定的行為負(fù)責(zé)。本網(wǎng)站對(duì)有關(guān)資料所引致的錯(cuò)誤、不確或遺漏,概不負(fù)任何法律責(zé)任。
任何單位或個(gè)人認(rèn)為本網(wǎng)站中的網(wǎng)頁(yè)或鏈接內(nèi)容可能涉嫌侵犯其知識(shí)產(chǎn)權(quán)或存在不實(shí)內(nèi)容時(shí),應(yīng)及時(shí)向本網(wǎng)站提出書(shū)面權(quán)利通知或不實(shí)情況說(shuō)明,并提供身份證明、權(quán)屬證明及詳細(xì)侵權(quán)或不實(shí)情況證明。本網(wǎng)站在收到上述法律文件后,將會(huì)依法盡快聯(lián)系相關(guān)文章源頭核實(shí),溝通刪除相關(guān)內(nèi)容或斷開(kāi)相關(guān)鏈接。 )