精品国产亚洲一区二区三区|亚洲国产精彩中文乱码AV|久久久久亚洲AV综合波多野结衣|漂亮少妇各种调教玩弄在线

<blockquote id="ixlwe"><option id="ixlwe"></option></blockquote>
  • <span id="ixlwe"></span>

  • <abbr id="ixlwe"></abbr>

    阿里、浙大聯(lián)合推出遷移學(xué)習(xí)模型「DEPARA」入選CVPR 2020:可將單個AI模型訓(xùn)練從“月”縮短至“天”

    近日,浙江大學(xué)與阿里安全的研究員聯(lián)合編寫的論文《DEPARA: Deep Attribution Graph for Deep Knowledge Transferability》收錄至CVPR 2020 Oral。其中介紹了一種通過遷移學(xué)習(xí)法,高效打造AI深度模型、應(yīng)對海量應(yīng)用場景的 “AI訓(xùn)練師助手”。

    旨在讓AI訓(xùn)練模型面對新場景時不用從頭學(xué)習(xí),而是在已有模型上進行遷移,從而迅速獲得相同能力的AI模型,進而縮短模型訓(xùn)練周期,甚至是從一個月縮短為一天。

    據(jù)阿里安全圖靈實驗室高級算法專家析策介紹,例如在內(nèi)容審核領(lǐng)域,不同場景的AI模型需要重新訓(xùn)練,以確保識別準確率而犧牲掉了時間成本。這些預(yù)訓(xùn)練的深度模型已消耗了大量訓(xùn)練時間以及大規(guī)模高質(zhì)量的標注數(shù)據(jù)等昂貴的計算資源。

    DEPARA沿著這條思路,以提升預(yù)訓(xùn)練的模型的使用程度,減少針對新場景的模型訓(xùn)練對時間以及數(shù)據(jù)的依賴。目前實現(xiàn)這一目標最流行的方法是遷移學(xué)習(xí)。

    浙江大學(xué)和阿里安全發(fā)現(xiàn),兩個預(yù)訓(xùn)練深度模型所提取的特征之間的遷移能力可由它們對應(yīng)的深度歸因圖譜之間的相似性來衡量。相似程度越高,從不同的預(yù)訓(xùn)練深度模型中獲得的特征相關(guān)性就越大,特征的相互遷移能力也就越強。而且,“AI訓(xùn)練師助手”還知道從什么模型遷移知識,用模型的哪個部分遷移能最好地完成任務(wù)。也就是說,他們發(fā)現(xiàn)了讓小白模型向AI深度模型學(xué)習(xí)的高效學(xué)習(xí)方法。

    “在這種方法的指導(dǎo)下,單個AI模型的生產(chǎn)周期從1個月降到1天,我們就能更快地發(fā)現(xiàn)不同的內(nèi)容風(fēng)險。”析策談?wù)摰健?/p>

    (免責聲明:本網(wǎng)站內(nèi)容主要來自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準確性及可靠性,但不保證有關(guān)資料的準確性及可靠性,讀者在使用前請進一步核實,并對任何自主決定的行為負責。本網(wǎng)站對有關(guān)資料所引致的錯誤、不確或遺漏,概不負任何法律責任。
    任何單位或個人認為本網(wǎng)站中的網(wǎng)頁或鏈接內(nèi)容可能涉嫌侵犯其知識產(chǎn)權(quán)或存在不實內(nèi)容時,應(yīng)及時向本網(wǎng)站提出書面權(quán)利通知或不實情況說明,并提供身份證明、權(quán)屬證明及詳細侵權(quán)或不實情況證明。本網(wǎng)站在收到上述法律文件后,將會依法盡快聯(lián)系相關(guān)文章源頭核實,溝通刪除相關(guān)內(nèi)容或斷開相關(guān)鏈接。 )

    贊助商
    2020-03-27
    阿里、浙大聯(lián)合推出遷移學(xué)習(xí)模型「DEPARA」入選CVPR 2020:可將單個AI模型訓(xùn)練從“月”縮短至“天”
    旨在讓AI訓(xùn)練模型面對新場景時不用從頭學(xué)習(xí),而是在已有模型上進行遷移,從而迅速獲得相同能力的AI模型,進而縮短模型訓(xùn)練周期,甚至是從一個月縮短為一天。

    長按掃碼 閱讀全文